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ABSTRACT: The range of unit cell orientations generated at the kink of a bent single
crystal poses unsurmountable challenges with diffraction analysis and limits the insight
into the molecular-scale mechanism of bending. On a plastically bent crystal of
hexachlorobenzene, it is demonstrated here that spatially resolved microfocus infrared
spectroscopy using synchrotron radiation can be applied in conjunction with periodic
density functional theory calculations to predict spectral changes or to extract information
on structural changes that occur as a consequence of bending. The approach reproduces
well the observed trends, such as the wall effects, and provides estimations of the
vibrational shifts, unit cell deformations, and intramolecular parameters. Generally,
expansion of the lattice induces red-shift while compression induces larger blue-shift of
the characteristic ν(C−C) and ν(C−Cl) modes. Uniform or non-uniform expansion or
contraction of the unit cell of 0.1 Å results in shifts of several cm−1, whereas deformation
of the cell of 0.5° at the unique angle causes shifts of <0.5 cm−1. Since this approach does
not include parameters related to the actual stimulus by which the deformation has been
induced, it can be generalized and applied to other mechanically, photochemically, or thermally bent crystals.

1. INTRODUCTION

When exposed to localized pressure or light, certain organic
crystals can bend without fracturing.1−15 Perhalogenated
benzenes such as hexachlorobenzene (HCB, Figure 1), whose
crystals can be bent plastically to 360°, which were studied
extensively by Reddy and collaborators,16 are among the first
reported examples. More recent studies have brought up
additional instances of such mechanically compliant molecular
crystals, and at least a dozen of examples of molecular crystals
that can bend elastically or plastically when exposed to localized

force in a three-point geometry or to light are now
available.17,18 In our own experience, we have observed the
effect with slender crystals from several newly synthesized
organic materials which bend readily when poked with a pointy
metal object. The original shape of some of the bent crystals
can be fully or partially recovered (elastic deformation),19−22

while others remain permanently deformed (plastic deforma-
tion).23,24 This malleability is counterintuitive for molecular
crystals, which are normally considered brittle, and provides
one of the most striking demonstrations of the restoring
capability of the weak intermolecular interactions that act
cooperatively to maintain crystal integrity.25 Within a broader
perspective, these properties bring the ordered molecular solid
materials, at least in view of the macroscopic manifestation of
their mechanical properties, closer to the mechanically more
robust soft materials such as polymers and liquid crystals, and
inorganic materials such as metals and alloys.26−35

Analysis of the perturbations in a bent crystal, however,
remains an intractable problem because the array of lattice
orientations that are generated in the bent region of the crystal
blurs the diffraction image and results in streaky diffraction
profiles. The inaccessibility of the crystal structure at the kink
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Figure 1. Polarized (a,b) and unpolarized (c) optical micrographs
showing mechanically induced plastic bending of hexachlorobenzene
crystals.
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with diffraction methods has thwarted studies into the atomic-
scale perturbations that occur in effect of bending. As a
consequence, most of the recent studies on bending crystals
have been limited to reports of (oftentimes serendipitous)
observations of molecular crystals that can bend under pressure
or when exposed to light. Our preliminary results of the
attempts to probe the deformation with infrared (IR)
spectroscopy are promising;25 however, interpretation of the
spectral signatures of bent crystals could not be accomplished
due to complications with the existence of multiple crystal
domains that the IR probe encounters on its path through the
crystal. Meaningful spectral analysis of a bent crystal requires a
computational approach to disentangle the relationships
between the local structural perturbations and the intra-
molecular vibrations.
Here, periodic density functional theory (DFT) calculations

are employed to unravel the effects that individual lattice
parameters have on spatially resolved infrared spectra of a bent
HCB crystal recorded using infrared microspectroscopy (μIR)
with synchrotron radiation. This approach is generally
applicable to any bendable single crystal from which IR spectra
of sufficient quality can be recorded. It can be applied to obtain
perturbations on the atomic-scale structural information that is
not accessible with other methods and includes changes in
lattice parameters, intermolecular interactions, and bond
distances.

2. RESULTS AND DISCUSSION
2.1. Rationale of the Computational Approach.

Periodic DFT calculations were performed on the crystal
structure of HCB25 to obtain an exact description of the overall
effect of lattice distortions on the wavenumbers of the
intramolecular C−C and C−Cl stretching vibrations, v[̃ν(C−
C)] and v[̃ν(C−Cl)] (for simplicity and in lieu of the common
spectroscopic parlance, instead of wavenumber, v,̃ hereafter the
term frequency will be used). For comparison with the
experiment, the atomic coordinates were optimized while
keeping the unit cell geometry fixed, either at the
experimentally determined structure or under conditions of
uniform or non-uniform distortion that were introduced by
incremental changes in lattice parameters. Uniform distortion
was enforced by simultaneous equal (positive or negative)
incremental changes in the unit cell axes. Non-uniform
distortion was attained by incremental changes of selected
unit cell axes (e.g., expansion of a and b while keeping c
constant). Full geometry optimization of the atomic
coordinates and unit cell parameters was simultaneously
performed as a benchmark. Subsequent to the optimization,
the harmonic vibrational frequencies at the Γ-point were
computed from the dynamic matrix by numerical evaluation of
the first derivatives of the analytic atomic gradients. All
calculations were carried out with the software CRYS-
TAL1436,37 (Supporting Information).
At the outset, the approach employed here assumes that the

vibrational frequency of a particular intramolecular normal
mode νj can be considered a function of changes in lattice
parameters (eq 1),

β= Δ Δ Δ Δv f a b c( , , , )j j (1)

or, alternatively (if more convenient), as a function of the
parameters themselves. Provided that the experimental crystal
structure is available, the vibrational frequencies can be

computed at a multidimensional grid of points; that is, the
frequencies can be treated as a “response surface”. At
equilibrium geometry, the partial derivatives of frequencies
can be calculated as
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and the changes in frequencies can be predicted as
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The IR probe passes through macroscopic fractions of the
crystal where it encounters microdomains that are deformed to
various extents by joint action of compressive and tensile forces.
Let q be any combination of geometry parameters within a
given segment of the bent crystal, q = {a,b,c,β}. Due to the
coexistence of multiple in-crystal segments and the variability of
q, the actual (observable) distribution of frequencies of a given
mode j due to the distribution of q is

∫=g v f v q p q q( ) ( , ) ( ) dj j (4)

In eq 4, p(q) is the normalized probability distribution function
that describes the lattice distortion, and f j(v,q) is a function that
describes the band-shape of the jth mode at a given structure q
(the integration is carried out over all possible values of
parameters in the q-space). The vibrational spectrum is a
superposition of contributions of all modes at each frequency
value v:

∫∑ ∑= =S v g v f v q p q q( ) ( ) ( , ) ( ) d
j

j
j

j
(5)

Therefore, prediction of the spectroscopic features of a bent
crystal, or even a semiquantitative explanation of its
spectroscopic signature, necessitates two issues to be resolved:
(a) the general trends directed by the function f j(v,q), that is,
the effect of lattice distortions on the intramolecular
frequencies, and (b) distribution of lattice distortions
throughout the bent crystal or at least along the path of the
incident IR beam. While the former task can, in principle, be
accomplished by using modern quantum theoretical methods,
the latter is much more challenging and requires experimental
information on the structure of the individual crystal segments.
However, it is possible to semiquantitatively rationalize the
experimental observations by using limited crystallographic
information. In the following discussion, these two aspects will
be addressed separately. It should be noted that, since the
change in crystal geometry q could have a substantial effect on
the peak position as well as on the band shape, the crystal
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deformation is normally accompanied by band broadening,
although the bending could also result in evolution of new
bands.
Equations 4 and 5 include the dependence of IR intensity of

each particular mode j on the crystal distortion (the departure
of the crystal geometry from that of a non-deformed crystal), so
that an additional intensity weighing in eq 5 is not necessary.
For instance, if the band-shape of the j-th mode of a non-
deformed crystal is described by a Gaussian model function:
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then the integral intensity of such band is

∫ π σ= =
−∞

+∞
I q f v q v A q q( ) ( , ) d 2 ( ) ( )j j j j (7)

In eqs 6 and 7, both the band position (v0j) and the half-width
(proportional to σj) depend on crystal geometry (q). However,
as it is explained below, the periodic DFT calculations indicate
that the inherent IR intensity of the vibrational modes
selected for correlation with the structure due to their
predictive powerdepend only weakly on q.
2.2. Modeling of the Effects of Crystal Deformation

on the Infrared Spectra. 2.2.1. Uniform Cell Expansion and
Contraction. We first consider the effects of uniform lattice
change on the infrared spectra (Figure 2a). The spectra were
sampled as the unit cell was expanded or compressed by
concomitant and identical increments of ±0.1 Å along all three
axes. The computed frequencies of two pairs of characteristic
ν(C−C) and ν(C−Cl) modes that are relevant to this study are
shown in Figure 2c,d, where the unit cell change is expressed by
the change in generalized cell parameter Δp = p − p0 (p stands
for a, b, or c, and p0 are the respective values in the non-
deformed crystal, taken from the room-temperature crystal
structure). The average frequency shifts are summarized in
Table 1, and the complete data are deposited as Tables S1−S3,
Supporting Information.
The variation of the vibrational frequencies with the

generalized lattice parameter p shows that uniform lattice
expansion induces red-shif t (lower wavenumbers), while uni-
form lattice compression induces a much larger blue-shif t (higher
wavenumbers) of the ν(C−C) and ν(C−Cl) modes (Figure
2c,d). As it is inferred from the insets in Figure 2c,d where the
effect is represented as the first derivative dν/d(Δp), the
steeper slope of the plot when the lattice shrinks relative to the
case when it expands implies that the compression exerts a
stronger effect on the vibration of these bonds relative to
expansion. This result can be rationalized in terms of the Pauli
repulsion potentials (“lattice repulsion”), which have a wall-like
effect on the respective oscillators. Such wall effects are related
to confinement of the atomic motions in the contracted lattice,
causing energetically unfavorable electronic overlap between
the vibrating motif and the neighbor atoms. In effect, the
harmonic force constant of the corresponding oscillator
increases as the vibrational potential stiffens, resulting in a
blue-shift of the respective frequency. On the contrary, lattice
expansion relaxes these effects and accounts for red-shifted
frequencies.
The average calculated shifts in the ν(C−C) and ν(C−Cl)

modes are listed in Table 1 (for uniform deformation, see the
“a, b, c” entry). The frequency shifts induced by uniform

changes in the unit cell which are of the order of the
experimentally determined values can be estimated by eq 8:

Δ = Δ ΔΔ =v v p p(d /d( )) p 0 (8)

Figure 2. Effect on the vibrational frequencies of uniform changes in
the unit cell size of a hexachlorobenzene crystal. (a) Schematic of the
uniform expansion and contraction of the unit cell induced by a set of
opposing forces (F) whereby the original crystal habit is preserved. (b)
Schematic of the effect of non-uniform crystal deformation caused by
action of three forces on the unit cell that results in bending of the
crystal. (c,d) Dependence of the frequencies of the two selected strong
ν(C−C) (c) and ν(C−Cl) (d) modes (mode numbers 6 and 22 in
Table S1, Supporting Information) on the degree of uniform crystal
deformation given as absolute change of the generalized unit cell axis,
Δp = p − p0, where p stands for a, b or c, and p0 are the respective
values in the non-deformed crystal, taken from the room-temperature
crystal structure. The data were fitted with fifth-order polynomial
functions (for the actual values of the fitted parameters, see the
Supporting Information). The alternative representation in the insets
shows the first derivative dν/d(Δp) as a function of Δp. (e,f)
Dependence on Δp of the intramolecular C−C (e) and C−Cl (f)
distances with largest contribution to the relevant normal modes (the
average values are given in green color). (g,h) Relation between the
wavenumbers of the C−C (g) and C−Cl (h) stretching vibrations and
the respective equilibrium distances.
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The value of the derivative dv/d(Δp) calculated at the lattice
equilibrium geometry (Δp = 0) by successive interpolation−
differentiation is −22.8 cm−1/Å. For lattice expansion of Δp =
+0.1 Å, eq 8 gives shifts of ∼2.3 and 2.4 cm−1 for the two ν(C−

C) modes, and ∼4.0 and 2.1 cm−1 for the two ν(C−Cl) modes
(note that the values presented in Table 1 are averaged over all
four relevant C−C and C−Cl modes). These values can be
used to predict shifts in vibrational frequencies from
experimentally determined uniform contraction or expansion
of the unit cell where such experiments are possible, for
instance, from high-pressure X-ray diffraction analysis.

2.2.2. Non-uniform Cell Expansion and Contraction. We
now expand this approach to the case of non-uniform lattice
expansion and contraction as a more realistic approximation of
the actual lattice deformation in a bent crystal (Figure 2b). A
grid of 0.5 Å was used in the calculations. The effect of
simultaneous expansion or contraction along two axes on two
characteristic vibrational modes, ν(C−C) (mode number 6)
and ν(C−Cl) (mode number 22) is shown in Figure 3, and the
results are summarized in Table 1 (the "a, b", "b, c" and "a, c"
entries) and Tables S4 and S5, Supporting Information.
The overall trends are similar to those observed in case of

uniform expansion and compression; unit cell expansion results
in frequency red-shif ts, while compression causes blue-shif ts. Due
to the wall effect, the contraction has a more pronounced effect
on the frequencies of the ν(C−C) and ν(C−Cl) modes relative
to expansion. As shown in Figure 3 (panels a, b, g, and h) and
Table 1 the frequencies are most significantly affected when the
unit cell is simultaneously compressed or dilated along axes a
and b. The crystal structure of HCB (Figure 4) shows that this
distortion is related to closest proximity as a result of the most
effective packing of the HCB molecules, which maximizes the
vibrational confinement. Thus, despite the complexity of the
structural changes induced by non-uniform macroscopic crystal
deformations, the overall spectral changes of a non-uniformly

Table 1. Predicted Average Shifts in the Characteristic ν(C−
C) and ν(C−Cl) Modes Induced by Expansion/Contraction
(Δp = ±0.5 Å) or Distortion (Δβ = ±10°) of the Unit Cell
of a Hexachlorobenzene Single Crystal

average wavenumber shift, Δv/̃cm−1

ν(C−C) ν(C−Cl)

compression expansion compression expansion

a 6.20 0.15 5.88 −1.63
b 11.66 −5.00 12.87 −8.14
c 3.12 −2.40 2.10 −2.09
a, b 20.82 −4.89 21.16 −8.87
b, c 15.41 −6.53 15.38 −9.30
a, c 9.26 −2.82 8.67 −3.37
a, b, ca 26.26a −6.43a 25.62a −9.90a

βb 12.66b −0.20b 10.08b −1.74b
aNote that due to ease of calculation, finer grid (0.1 Å) was used in the
calculations of the uniform than in the non-uniform (0.5 Å)
contraction/expansion. The values shown here were averaged (over
four C−C or four C−Cl modes) at deformation of 0.5 Å for direct
comparison. More details related to wavenumber shifts at various
deformations are given in the Supporting Information. bLarger
increment (±10°) used to calculate the β values was intentionally
selected to facilitate comparison with the much larger changes caused
by small increments in the unit cell axes. “Expansion” here refers to Δβ
< 0, while “compression” refers to Δβ > 0 (Δβ = β − β0).

Figure 3. Effect of non-uniform contraction and expansion of the unit cell on the vibrational frequencies of hexachlorobenzene. Two-dimensional
cuts through the three-dimensional surfaces are shown together with the respective contour plots. The plots show the effect of changes in the unit
cell on selected characteristic modes, ν(C−C) (mode number 6) in panels a−f, and ν(C−Cl) (mode number 22) in panels g−l. Table S1,
Supporting Information, contains labeling convention and detailed description of the normal modes. Some of the axes in the 3D plots are shown
inverted for clarity of presentation.
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distorted crystal can be rationalized similarly to the uniform
compression/expansion. Regardless of its origin, compression is
expected to result in frequency upshift. Expansion, on the other
hand, causes frequency downshift, however the effect is smaller
relative to compression.

To obtain insight into the magnitude of the frequency shifts
upon non-uniform crystal deformation, Δv can be approxi-
mated to the first order:
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Interpolation of the “response surface” of Δv as a multivariate
second-order polynomial in p1 and p2 (with a cross-term),
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and subsequent calculation of the partial derivatives in eq 9
gives a shift in the overall frequency change of the highest-
frequency ν(C−C) mode of ∼−2.0 cm−1 when the unit cell
simultaneously expands by +0.1 Å along a and b. Similar results
are obtained for the other pairs of variables. Simultaneous
expansion by +0.1 Å along a/c and b/c leads to frequency shifts
of this mode of ∼−1.3 and −2.3 cm−1, respectively. The
corresponding frequency changes of the highest-frequency
ν(C−Cl) mode are −3.6, −1.4, and −3.2 cm−1 when the unit
cell is simultaneously expanded by +0.1 Å along a/b, a/c, and
b/c, respectively. The frequency shifts due to uniaxial
expansion/contraction are listed in Table 1 (entries "a", "b"
and "c") and Tables S6 and S7 in the Supporting Information.

2.2.3. Unit Cell Distortion. The distortion of the unit cell was
included in the computations by varying the unique angle (β).

Figure 4. Two-dimensional (a,c,e) and three-dimensional (b,d,f)
representations of the molecular packing in a crystal of hexachlor-
obenzene viewed along the a axis (a,b), b axis (b,d), and c axis (e,f).
The red broken lines show the Cl---Cl contacts.

Figure 5. Effect of unit cell distortion, modeled as change in the unique angle β, on the characteristic C−C and C−Cl stretching modes of a
hexachlorobenzene crystal. (a) Experimentally observed changes in the unique angle β upon bending (adapted with permission from ref 25,
copyright Nature Publishing Group). (b) Cartoon representation of the tensile and compressive forces that develop upon bending on the convex
(cx) and concave (cc) side of the crystal, causing deformation of the unit cell and concomitant change in β. (c,d) Dependence of the frequency of
characteristic ν(C−C) (c) and ν(C−Cl) (d) modes on the unit cell distortion expressed as deformation of β, Δβ = β − β0, where β0 is the unique
angle in the non-deformed crystal. The insets show plots of the first derivatives of the stretching frequencies with respect to Δβ.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.6b11212
J. Am. Chem. Soc. 2017, 139, 2318−2328

2322

http://dx.doi.org/10.1021/jacs.6b11212


Table 1 summarizes the average calculated shifts of the ν(C−
C) and ν(C−Cl) modes (the “β” entry) and Tables S8 and S9
in the Supporting Information contain the results. Figure 5c,d
shows the relation between the unit cell deformation and the
frequencies of two characteristic ν(C−C) and ν(C−Cl)
vibrations. The different slopes of the plots are due to the
different sensitivity of the two modes on the complex structural
perturbations induced by unit cell distortion. Compared to the
expansion or compression of the unit cell (changes in only a, b,
and/or c), where the relative orientation of the molecules is
preserved, the response of the vibrational frequencies to
changes in β is related to greater anisotropy, and the analysis
is less straightforward. However, the effect on the frequencies is
also generally smaller (Table 1). Typically, change in β of +0.5°
is expected to cause a frequency shift of only ∼0.3 cm−1 for
ν(C−C) and ν(C−Cl). The frequency shift induced by change
in β of the order of the experimentally determined values25 can
be estimated by

β βΔ = Δ ΔβΔ =v v(d /d( )) 0 (11)

As a measure of the effect of cell distortion, the derivative dv/
d(Δβ), computed by successive interpolation-differentiation at
the lattice equilibrium geometry (Δβ = 0) is +0.6 cm−1/°.
2.3. Analysis of Experimental μIR Spectra. 2.3.1. Assign-

ments in the Spectrum of a Straight Crystal. Single crystals of
HCB bend when the pressure is applied on the (001) face, but
break readily when they are pressed on the (100) face.
Approximately 12 μm-thick single crystal of HCB was bent in a
three-point bending geometry by application of localized
pressure on the (001) face and used to record the μIR spectra
(Figure 6a−d).25 The IR probe, cut to size 4 × 8 μm2, was
normal to the bending plane. Figure 6e,f shows the spectral

regions of ν(C−C) and ν(C−Cl) bands recorded from the
straight section, and from the convex (cx) and concave (cc)
sides of the bent section of the bent crystal. The spectra were
analyzed by fitting the complex bands with the smallest number
of mixed Gaussian−Cauchy (Lorentzian) bands which
provided statistically acceptable fit. The ν(C−C) region of
the non-deformed crystal was fitted with 6 bands, at ∼1347,
1342, 1335, 1326, 1298, and 1294 cm−1. The fitted bands are
shown in Figure 7, and their assignments are presented in
Table 2. The bands in the spectrum of the straight crystal
(Figure 7c,f) were assigned38 based on computational analysis
(Table S1, Supporting Information)39 and comparison with
earlier assignments.40−43

2.3.2. Assignments in the Spectrum of a Bent Crystal.
When a molecular crystal is deformed, a range of segments with
varying degree of distortion and various orientation are
generated along the path of the IR beam. The IR probe thus
samples a set of structures across a continuous range of
geometries. As shown in Figure 6e,f, the ν(C−C) bands
recorded from the cc and cx sides are significantly broader and
have more complex structure relative to the non-deformed part
of the crystal. The peak profiles of the bent crystal required
more components for satisfactory fitting (Figure 7a,b,d,e). The
highest frequency bands on the cc and cx portions of the bent
crystal appear at 1354 and 1355 cm−1, respectively, and the
lowest-frequency bands are at ∼1294 cm−1 in both cases.
While exact assignment of all bands in the spectrum of the

bent crystal is not feasible, the origin of some bands can be
deduced from their positions and relative intensities. The bands
in the 1285−1315 cm−1 region (Figure 7a,b) are related to the
bands in the 1285−1310 cm−1 region of the non-deformed
sample. These bands originate from ν(C−C) modes and are of
Bu and Au symmetry, with the Bu bands being stronger (Table
S1, Supporting Information). The bands in the 1315−1360
cm−1 region correspond to the bands in the same region of the
non-deformed crystal. These vibrations are mostly ν(C−C)
modes, but they possibly also include contributions from the
Kekule-́type ring vibration. In the spectrum recorded from the
cx side of the bent crystal, the spectral envelopes in these two
regions are notably wider. The bands are clearly red-shifted, and
this is especially apparent in the 1360−1315 cm−1 region, but
also the intensity pattern involves certain redistribution toward
higher frequencies (blue-shift). The bands on the cc side are
also wider, although they are less red-shifted.
The overlapped ν(C−Cl) bands of the non-deformed crystal

form an envelope in the 685−735 cm−1 region (Figure 7f). The
two strongest bands can be assigned to the ν(C−Cl) modes
with Bu symmetry. An additional weaker band due to ν(C−Cl)
mode (Au) is also expected in this region. In the bent crystal,
these ν(C−Cl) bands are additionally split and overlap in the
685−740 cm−1 region (Figure 7d,e). Closer inspection of the
relative intensity in the bands of the bent crystal shows tailing
on the lower-frequency side in the spectra of the cx and cc
sides, and a new band at ∼690 cm−1. Less pronounced tailing to
high frequencies is also present in the cx side.

2.3.3. Rationale of the Effects of Bending on the
Spectrum. In a real bent crystal the crystal lattice is non-
uniformly distorted, and the cumulative effect of the interaction
of the IR probe with a variety of geometries on the overall
spectrum is best described by the general expression given by
eq 5. The probability distribution function is unknown, and
thus direct computation of the IR spectrum of the bent sample
is not possible. Nevertheless, the expected trends in the

Figure 6. Effect of lattice distortion on the regions of the C−C and
C−Cl stretching vibrations in the unpolarized experimental μIR
spectra of HCB.25 (a−d) Sample−instrument geometry used to record
the spectra from the straight section (a) and from the convex (cx) and
concave (cc) sides of the bent section (b−d) of the bent crystal. (e,f)
Effect of bending on the complex bands in the regions of characteristic
C−C (e) and C−Cl stretching vibrations.
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fundamental modes44 can be rationalized by accounting for
some characteristics of the probability distribution function in
special cases, or by comparison with similar systems.
The results can be rationalized with eq 4. In the ideal case of

a perfect non-deformed crystal, the probability distribution
function p(q) corresponds to a Dirac delta function δ(q −
qstraight), peaking at the experimental crystal geometry that
corresponds to a non-deformed crystal, qstraight. Subsequent
application of eqs 4 and 5 gives the vibrational spectra in the
simplest case of a non-deformed crystal:

∫ δ= − =g v f v q q q q f v q( ) ( , ) ( ) d ( , )j j jstraight straight (12)

∑=S v f v q( ) ( , )
j

j straight
(13)

The function p(q) of a real bent crystal, however, reflects a
collection of geometries; thus, the bands in its spectrum are
indeed expected to be broader than those of a non-deformed

crystal. The same considerations apply to the ν(C−Cl) bands
in Figure 6, where there is even larger band spread to high
frequencies (Figure 7d−f). Based on the computational results
(see above), this result is attributed to stronger sensitivity of the
ν(C−Cl) modes to lattice contraction, which decreases the
Cl---Cl and other intermolecular contacts. This results in
energetically unfavorable repulsive interactions, and enhances
the vibrational confinement effects.
The observed trends in relative intensities are also reflected

by the hybrid periodic DFT−integral equation model. While
periodic DFT computations predict frequency red-shifts of the
ν(C−C) modes upon lattice expansion, the function p(q) that
describes the distribution of molecular geometries on the cx
side is expected to be asymmetric and to tail toward expanded
structures. An opposite trend is expected for the cc side.

2.4. The Inverse Problem: Structural Inferences from
Spectroscopic Results. The preceding discussion explains the
appearance of the vibrational spectrum of a deformed HCB
crystal as a collective result of contributions from individual
perturbed lattice parameters. The real value of the spectra−
structure correlations, however, is in their predictive power
toward changes that occur on a molecular level, in light of the
inaccessibility of structural information with diffraction
methods. Using vibrational (IR or Raman) spectroscopy to
extract structural information represents an “inverse” problem,
as inferences on structural parameters are extracted from the
spectrum. Although the high molecular symmetry of HCB is in
favor of using this system for such purpose, the analysis is
complicated by the non-uniform, anisotropic and concomitant
changes in the unit cell parameters (a, b, c, and β).
The parameter variation across a range of values can be

described by the multidimensional probability distribution
function, p(q). Due to the additive properties of the vibrational
spectrum given by eq 5, inversion of the full vibrational
spectrum is analogous to inversion based on a single-mode
band described by eq 4; the inversion of spectroscopic data,
most completely described by p(q), is equivalent to finding
p(q) from gj(v). Since p(q) is part of the integrand in eq 4, it

Figure 7. Spectral analysis of the C−C (a−c) and C−Cl (d−f) stretching region of the IR spectra of HCB. The unpolarized spectra recorded from
the straight portion of the bent crystal (c,f), and from the concave (cc; a and d) and convex (cx; b and e) sides of the bent section are reconstructed
by non-linear fitting with linear combinations of Gaussian and Cauchy (Lorentzian) functions. The numbers are the band wavenumbers in cm−1.

Table 2. Calculated and Experimental (Fitted)
Wavenumbers of Selected Characteristic ν(C−C) and ν(C−
Cl) Modes, and Assignment Based on Vibrational Analysis
and Literature Data

wavenumber, v/̃cm−1

calculated
(DFT)a experimentalb

literature
datac

assignment
(symmetry)d

1337.4 (1378.8) 1347.5, 1342.3 1340 ν(C−C) (Bu)
1334.8 (1376.1) 1334.9, 1325.9 ν(C−C) (Au)
1331.7 (1372.9) 1297.9, 1293.8 1294 ν(C−C) (Bu)
718.0 (677.4) 724.0, 714.7 719 ν(C−Cl) (Bu)
706.4 (666.4) ν(C−Cl) (Au)
705.2 (665.2) 706.3, 700.7 695 ν(C−Cl) (Bu)

695.8 ν(C−Cl) (Au)
aScaled DFT frequencies (the unscaled values are in parentheses).
bFitted to the experimentally recorded spectrum (Figure 7). For a
complete list of vibrational modes and frequencies see Table S1,
Supporting Information. cReferences 40−43. dApproximate band
description and symmetry.
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may be regarded as Fredholm integral equation of the first
kind45

∫ ϕ=g x K x t t t( ) ( , ) ( ) d
a

b

(14)

where the integration is carried out over all possible values of all
four structural parameters. In reality, the range of possible
values of a, b, c, and β is rather narrow, so p(q) is a peak-shaped
function with low dispersion.
Kj(x,t) in eq 14 is the integral kernel. In case of a bent crystal

the integral kernel corresponds to the function that describes
the band shape of the j-th mode of a non-deformed (straight)
crystal, f j(v,qstraight). It was already demonstrated above that
when one deals with an ideal non-deformed crystal, gj(v) and
f j(v,qstraight) coincide, because p(q) is a Dirac delta function
δ(q−qstraight). Mathematically, in the case when the integral
kernel may be written in the form K(x − t) the integral in eq 14
is a convolution of the functions K and ϕ:

∫ ϕ ϕ= − =g x K x t t t K( ) ( ) ( ) d
a

b

(15)

In this specific case, eq 15 can be Fourier-transformed by
applying the convolution theorem

ϕ=F g F K F[ ] [ ] [ ] (16)

to obtain the unknown function ϕ by inverse Fourier
transformation:

ϕ = − ⎡
⎣⎢

⎤
⎦⎥F

F g
F K

[ ]
[ ]

1

(17)

In a general case of the problem treated here, however, the
integral kernel does not have to be in difference form, and the
integral in eq 4 can be solved numerically.45 The complexity of
the probability distribution function in the bent crystal case and
the fact that the integral kernel for each mode contains
contributions from several bands allows only semiquantitative
analysis of the data. What is actually known is the form of the
band-shape function for a given mode j in the case of a non-
deformed crystal f j(v,qstraight) and the corresponding band-shape
function in the case of a deformed crystal, gj(v). The
“distortion” of f j(v,qstraight) into the observed band gj(v) is
modulated by the explicit form of the integral kernel in eq 4,
f j(v, q), and by the probability distribution function p(q).
In the experiment, the IR beam encounters deformed unit

cells with a range of cell parameters and the probability
distribution function provides the most exact description of the
deformed crystal structure. Because the deformation is induced
externally, the system is not necessarily in equilibrium, and thus
the probability distribution is likely a complex function.
Nevertheless, conclusions that reflect its asymptotic behavior
can be made by considering the theoretical results.
The second factor causing modulation of the band shape of

the j-th mode is the integral kernel f j(v,q). It is exceedingly
arduous, if not outright impossible, to derive conclusions about
the exact form of this function based on experimental data. The
dependence of positions of the ν(C−C) and ν(C−Cl)
stretching bands on the crystal deformation were elaborated
above in case of simple uniform and non-uniform changes. The
crystal is macroscopically distorted, which imposes highly
complex and anisotropic unit cell distortions. Assuming simple
(Gaussian) shape of the bands corresponding to the selected
modes provides a theoretical description of the dependence of

v0j on q, that is, v0j(q) in eq 6. Explicit modeling of the
dependence of σj(q) in eq 6 poses a much more challenging
task, because the exact form of the band shape, including its
half-width, depends on the dynamics of multiple relaxation
processes and their change as the crystal deforms.
The bending of a crystal is occasionally accompanied by

evolution of new bands (Figure 7) in the region of the j-th
mode that are offset by Δv0j relative to v0j(qstraight) (note that in
the experimental spectrum the evolution of a new band does
not necessarily result in a separate band and could appear as
broadening of a band of the non-deformed crystal). The shift in
band position is given by

Δ = −v q v q v q( ) ( ) ( )j j j0 0 0 straight (18)

and therefore

= + Δv q v q v q( ) ( ) ( )j j j0 0 straight 0 (19)

The dependence of v0j on q can be determined from
theoretical calculations. The explicit form of this dependence (a
polynomial function) allows us to make the following
conclusions. Let us consider an infinitesimal interval dq around
q that corresponds to the observed value of v0j (obtained by
simple inversion of theoretical dependencies). The probability
distribution function p(q) that appears in the integral equation
has a value proportional to the product of the infinitesimal
interval dv around v0j and gj(v0j). If analyzed in conjunction
with the theory, the observed band shape of an arbitrarily
deformed crystal provides semiquantitative evidence for the
contributions of the structural motifs perturbed within the
particular range of q values. For example, appearance of low-
frequency bands in the ν(C−C) region of a bent crystal or band
broadening indicates a range of structures that cause ν(C−C)
frequency downshift. Likewise, appearance of upshifted ν(C−
Cl) peaks indicates set of populations in the probability
distribution function in which the vibrational confinement
causes blue-shift. Deciphering the effects of a particular form of
the integral kernel and the probability distribution function on
the spectra-structural correlations for individual structural
parameters requires experimental spectra of uniformly distorted
crystals or of crystals where the effect can be examined by
varying each structural parameter independently from the
others.

2.5. Comparison with Other Models. An alternative
approach to the DFT model described here could be an
approach based on the vibrational exciton model similar to the
approach of Ostapenko.46−48 This approach was not directly
applicable; if applied to molecular crystals composed of organic
molecules that are exposed to highly anisotropic stresses which
generate highly anisotropic strain fields, it would lead to
exceedingly large number of adjustable parameters. We also
note the work of Ordon, Komorowski, and their collaborators
on the mechanical perturbation of molecular systems,49−52

however their work focuses on aspects other than the effect of
crystal deformation on the molecular vibrations. Conventional
theories of plasticity, on the other hand, as well as their
modified variants that explicitly account for the effects related
to the length-scale of the material53−59 are mostly phenom-
enological and thus they require numerous adjustable
parameters which are not in an unequivocal manner related
to the molecular parameters relevant to the present study.
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3. CONCLUSIONS
The structure perturbations that occur during bending of
molecular crystals are not directly accessible with the currently
available diffraction methods. On a mechanically bent crystal of
hexachlorobenzene (HCB) it is shown here that microfocus
infrared spectroscopy with synchrotron radiation can provide
semiquantitative information on the changes in the lattice
parameters and, provided the crystal structure of the unbent
crystal is known, also on the intermolecular distances. The
contributions of the distortion of the individual lattice
parameters can be deconvoluted by performing a set of
calculations on the crystal structure of the unbent crystal within
the periodic DFT.
Bending of the HCB crystal is accompanied by frequency

shifts and broadening of the intermolecular stretching bands of
the unbent crystal, and by evolution of new bands. Generally,
lattice expansion results in frequency red-shifts, while
contraction brings about stronger blue-shifts. The stronger
effect of lattice contraction is ascribed to vibrational wall-like
effects.
As a guide to estimate the expected cell distortions, uniform

expansion or contraction of the unit cell of 0.1 Å along all three
axes results in frequency shift of about 2.3 and 2.4 cm−1 in the
strongest ν(C−C) modes and 4.0 and 2.1 cm−1 in the strongest
ν(C−Cl) modes. Identical non-uniform expansion or con-
traction along two unit cell axes results in shift of the ν(C−C)
mode of about 2.0 cm−1. Distortion of the unit cell in respect to
the unique angle Δβ = 1° results in shift of about 0.6 cm−1,
however the trend in the effect of unit cell distortion on the
vibrational frequencies is more complex than the cell
expansion/contraction. A model based on the collective
contribution of individual unit cell parameters on the
probability distribution function is proposed that scrutinizes
the effects of bending on the vibrational spectrum.
The approach that we have adopted herecalculation of

intramolecular vibrational frequencies in a series of deformed
geometries using periodic ab initio or DFT methodology
follows the general strategy that has been used in earlier
molecular-phenomenological models, such as those that have
been developed by Drickamer and Boldyrev.60−66 However, in
contrast to the earlier works which used empirical interatomic
interaction potentials to compute the vibrational spectra of
crystals under high pressure, the approach described here
applies first-principles theory on a non-uniformly deformed
(bent) crystal. The approach reproduces well the observed
trends, such as the wall effects, and provides estimation of the
vibrational shifts, unit cell deformations and intramolecular
parameters. Since it generally establishes relations between
selected intramolecular vibrational frequencies, unit cell
parameters and interatomic distances, it can be generalized
and applied to other mechanically or photochemically bent
crystals. Considering that the results and the model described
here do not include parameters related to the actual stimulus by
which the deformation was induced, the approach and the
conclusions are generally applicable to molecular crystals that
are bent by other external stimuli (light, heat, humidity)
provided that high-resolution infrared spectra are available.

4. METHODS
4.1. Infrared Spectra. Commercially available sample of HCB was

recrystallized from hexane. As-obtained (unbent) or bent prismatic
crystals of size 0.5 × 0.012 × 0.010 mm3 were used to record the IR
spectra. The spectra were recorded by using synchrotron IR radiation

at beamline BL43IR of SPring-8 using a Vertex70 spectrometer
equipped with a Hyperion 2000 infrared microscope (Bruker).
Typically, 2560 spectra at resolution of 2 cm−1 were accumulated.
Additional details of the experiment are described elsewhere.25

4.2. Computations. The quantum mechanical calculations were
carried out within the framework of the Kohn−Sham formalism of the
DFT. Periodic 3D DFT calculations were carried out by representing
the single-particle wave functions (that is, the crystalline orbitals) as
linear combinations of Bloch functions, which are defined in terms of
local functions (atomic orbitals). The local orbitals were represented
as linear combinations of Gaussian type functions. All quantum
mechanical calculations were carried out with CRYSTAL14.36,37 The
quantum theoretical methodology in CRYSTAL is based on localized
Gaussian-type basis sets. The 6-31G(d) all-electron basis set was used
for all carbon atoms. To reduce the computational costs while
maintaining sufficiently accurate prediction of the overall trends the
large-core version of the Hay-Wadt pseudopotential was adopted to
describe the core electrons of the chlorine atoms.67 The remaining 7
electrons (3s23p5) were described by the two sp shells, as described in
ref.68 In a series of test calculations, the pob-TZVP basis of triple-ζ
valence with polarization quality developed by Bredow et al.69 was also
used on all C and Cl atoms. In constructing the Kohn−Sham
Hamiltonian, a combination of Becke’s three-parameter adiabatic
connection exchange functional (as implemented in CRYSTAL14
code, i.e., adopting the WVN 5 functional) was used (B370) in
combination with the Lee−Yang−Parr (LYP71) correlation functional.
The application of B3-LYP methodology to study molecular crystals
with localized basis sets has been discussed and justified in a number of
previous studies,72−79 although more specialized functionals have been
also developed for periodic Hartree−Fock and Kohn−Sham
calculations. To control the computation of two-electron Coulomb
and exchange integrals as well as the truncation criteria for the infinite
sums encountered in the calculations, the following set of TOLINTEG
parameters (T1−T5) was used: (7,7,7,7,16). A regular sublattice with
shrinking factor of 6 was used to sample the reciprocal space. This
corresponds to 80 independent k-points in the irreducible Brillouin
zone. For numerical integration in DFT, the pruned grid of 75 radial
and 974 angular points (75,974) was used. The suitability of the
computational approach was confirmed by comparison of the spectra
calculated by periodic DFT with literature data on experimental
spectra recorded from an HCB single crystal.40−43 The periodic DFT
computations reproduce remarkably well the experimental single-
crystal data (for discussion on the spectral comparison, see the
Supporting Information and Table S1 therein). The computational
method proved to be robust, and reflects faithfully the non-equilibrium
conditions in a strained crystal.

Extensive geometry optimizations were carried out using analytical
energy gradients (employing a quasi-Newton optimization scheme,
and by updating the second derivative matrix at each energy-
computational step by the BFGS algorithm) with respect to the
atomic coordinates and in several cases also the unit-cell parameters.
To study the effect of (external) crystal deformation on the (intrinsic)
structure of the system (the atomic positions within the cell), a series
of geometry optimizations were carried out by fixing the lattice
parameters at either the experimentally obtained values of a, b, c, and
β, or at a series of values of these parameters selected so as to emulate
both uniform and non-uniform shrinkage/expansion of the crystal (for
further details and the actual choice of the grid of points, see the main
text and the figures). The criterion for convergence of the SCF Kohn−
Sham equations in respect to the total energy was set to 10−7. The
convergence during the geometry optimization was controlled by
monitoring both gradient component values and the nuclear
displacements, using the default criteria in CRYSTAL14. Subsequent
to the geometry optimizations, harmonic vibrational analyses were
carried out at the Γ-point by computing the dynamical matrix with
numerical calculation of the derivatives of the analytically computed
atomic gradients. The harmonic vibrational frequencies in the normal-
mode approximation were computed by diagonalization of the mass-
weighted dynamical matrix. The IR intensities were computed through
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the atomic Born effective charge tensors evaluated by the Berry phase
methodology.
There are 24 atoms in the unit cell of HCB (2 formula units),

leading to 72 vibrational normal modes. Symmetry analysis gives Γtotal
= 18Ag⊕18Bg⊕18Au⊕18Bu. A total of 33 of the modes are IR active,
while 36 are Raman active. Additional 3 modes, two of which are of Bu
and one of Au symmetry, correspond to rigid translations. The
complete list of normal modes, as well as their frequencies,
approximate descriptions and IR intensities are given in Table S1,
Supporting Information. The IR-active modes that are the main
contributors to the intramolecular C−C and C−Cl stretching
vibrations, and have strongest intensities were selected for spectra-
structure correlations. In Table S1, Supporting Information, these
modes are labeled 6, 8, 22, and 24.
We note that the DFT calculations have been already utilized to

support the band assignments in the IR spectra of crystals that were
subject to high pressure.80−84 These studies however used geometry
optimizations followed by frequency calculations at a single com-
pressed crystal geometry; a range of deformed geometries that
corresponds to bending of a single crystal has not been investigated
thus far. The results from the periodic DFT calculations related to the
functions f j(v,q) reported here could appear analogous to the case of
simple compression of the unit cell, which is expected to result in
frequency blue-shifts, or expansion, which leads to red-shifts. On the
contrary, the periodic DFT approach applied to a bent crystal accounts
for all subtle effects on the frequency of each intramolecular mode that
occurs as a result of crystal deformation (for example, altered
cooperative effects, dipole−dipole coupling, existence of qualitatively
different forces acting on molecules in different directions upon
application of anisotropic stresses, etc.). This is brought about the
freedom of atomic positions for full relaxation during the PES
minimum search at fixed geometry of the deformed unit cell. The
existence of a variety of deformations throughout the crystal is
accounted for by a suitable function p(q).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.6b11212.

Tables S1−S9 with spectroscopic data; complete
captions to Figures 2 and 5 (PDF)
Video 1, crystal bending (AVI)
Video 2, crystal bending (AVI)
Video 3, crystal bending (AVI)

■ AUTHOR INFORMATION
Corresponding Authors
*ljupcop@pmf.ukim.mk
*pance.naumov@nyu.edu

ORCID
Manas K. Panda: 0000-0002-6297-2070
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